220 | 0 | 5 |
下载次数 | 被引频次 | 阅读次数 |
果树修枝机作业过程中会产生强烈的液压冲击,为了探究其原因,利用AMESim软件中的HCD液压元件设计模块,建立了由齿轮泵、三位四通电磁换向阀和柱塞马达组成的液压系统模型。通过分析马达进油口、换向阀进油口和换向阀回油口的压力和流量可知,液压冲击来源于负载冲击和液流惯性两个方面。为了进一步验证这一结论,进行了田间试验,通过分析短暂抱死、长时间抱死和正常工作工况下的压力变化,以及设备启停和换向时的压力超调量,得到压力变化率分别为4.37、7.82、4.43 MPa/s,液流惯性引起的最大超调量为3 268%。由此表明:负载冲击具有随机性和突变性的特点,是引起液压系统冲击振动的最主要因素;液流惯性具有振荡起伏剧烈、作用时间短、平息速度快的特点,仅在设备换向启停时发生。研究结果有助于进一步优化果树修枝机的液压设计和工作性能,为后续液压冲击抑制提供了参考和依据。
Abstract:The fruit tree pruning machine would generate strong hydraulic impact during pruning work. In order to explore the reason, the HCD hydraulic component design module in AMESim software was used to establish a hydraulic system model consisting of gear pump, three-way four-way electromagnetic directional valve, and plunger motor. By analyzing the pressure and flow rate at the motor inlet, directional valve inlet, and directional valve return ports, the following conclusions could be drawn: the hydraulic shock was caused by load shock and fluid flow inertia. In order to verify the conclusion, field experiments were conducted. By analyzing the pressure changes undershort-term lock up, long-term lock up, and normal operation, as well as the pressure overshoot during equipment start stop and reversing, the pressure change rates were 4.37, 7.82, and 4.43 MPa/s, respectively. The maximum overshoot caused by liquid flow inertia was 3268%. These results confirmed that load impact was random and mutational, which was the primary factor inducing impact vibrations in hydraulic systems. The inertia of liquid flow had the characteristics of severe oscillation, short action time, and fast calming, occurring solely during the directional switching and start-stop phases. The research findings contributed to the further optimization of the hydraulic design and operational performance of fruit tree pruning machines, and provided a reference and basis for subsequent hydraulic shock suppression.
[1] 傅本重,邹路路,朱洁倩,等.中国核桃生产现状与发展思路[J].江苏农业科学,2018,46(18):5-8.
[2] 曹亚龙.新时期我国核桃产业发展现状、问题及对策[D].郑州:河南农业大学,2022.
[3] 赵敏,杨波,李伟.液压冲击抑制方法研究现状与展望[J].中国农机化学报,2023,44(9):123-130.
[4] 赵小龙,赵丁选,王建涛,等.定量泵负载敏感系统卸荷压力冲击抑制研究[J].农业机械学报,2020,51(9):408-417,407.
[5] 汪飞雪,姚静,胡福泰,等.锻造液压机振动特性机-液联合仿真[J].中国机械工程,2020,31(10):1175-1182,1189.
[6] 王凯,李扬眉,李洪文,等.大容积伺服油缸卸载时液压冲击的分析与解决[J].机床与液压,2020,48(4):165-168.
[7] 佘小爽.混凝土输送泵二通插装阀液压系统冲击抑制方法研究[D].长沙:中南大学,2022.
[8] 史余鹏.液压挖掘机工况识别方法及分阶段能量管理策略研究[D].长沙:中南大学,2022.
[9] 夏毅敏,李正辉,谭顺辉,等.固-液-温耦合作用下油液特性对大排量柱塞泵流量脉动的影响[J].华南理工大学学报(自然科学版),2023,51(9):44-55.
[10] 滕韬.盾构刀盘回转驱动液压系统建模与仿真研究[D].长沙:中南大学,2010.
[11] 王志超,杨然兵,陈栋泉,等.基于二阶欠阻尼阶跃响应的收获机割台液压缸选型分析[J].农机化研究,2024,46(3):21-29.
[12] 喻怀斌,卢银菊,谢忠兵,等.可控阻尼车辆半桥式液压馈能减振器设计及分析[J].中国工程机械学报,2023,21(4):333-337.
[13] 石晓悟,何武全,田雨丰,等.山丘区自压输水管道水锤防护措施研究[J].灌溉排水学报,2023,42(9):138-144.
[14] URBANOWICZ K,JING H X,BERGANT A,et al.Progress in analytical modeling of water hammer[J].Journal of fluids engineering,2023,145(8):081203.
[15] 张奕,周凯红,佘东.非圆齿轮泵流量特性分析及脉动优化方法[J].机床与液压,2023,51(24):134-139.
[16] 解忠良,焦见,杨康.航空发动机齿轮泵轴承润滑及抗偏载特性分析[J].机械工程学报,2023,59(9):198-211.
[17] URBANOWICZ K,BERGANT A,STOSIAK M,et al.Developments in analytical wall shear stress modelling for water hammer phenomena[J].Journal of sound and vibration,2023,562:117848.
[18] 吕林硕,边永亮,李建平,等.远射程喷雾机喷雾参数优化与试验[J].农机化研究,2024,46(2):163-171.
[19] 廖瑶瑶,廉自生,袁红兵,等.液压支架用大流量换向阀振动冲击分析[J].液压与气动,2015(5):79-82,104.
[20] 聂振宇,李晋阳,陈云飞.宽幅喷杆喷雾机振动传递特性分析与试验[J].农机化研究,2024,46(1):25-34.
[21] 程伟,刘凯磊,李宇,等.负载口独立控制系统主动防气穴控制研究[J].机床与液压,2021,49(18):139-144.
[22] 宋延林.液压传动与液压油温度高故障的分析排除[J].石化技术,2022,29(4):183-185.
[23] 贾大明,徐文静,王俊卿.基于Fluent流场分析的拖拉机齿轮泵结构优化设计[J].农机化研究,2019,41(6):253-257.
[24] 曹文斌,史有程,牛壮,等.多路阀主阀芯不同节流槽对其稳态液动力的影响[J].机床与液压,2023,51(10):124-128.
[25] 张小龙,张军辉,方梓帆,等.内曲线径向柱塞马达滚柱-柱塞配合间隙优化[J].华中科技大学学报(自然科学版),2021,49(8):8-13.
基本信息:
DOI:10.13427/j.issn.1003-188X.2025.10.036
中图分类号:S224
引用信息:
[1]赵敏,杨波,李伟等.基于AMESim修枝机液压系统的冲击设计与仿真[J].农机化研究,2025,47(10):284-291.DOI:10.13427/j.issn.1003-188X.2025.10.036.
基金信息:
新疆维吾尔自治区自然科学基金项目(2022D01C93); 丝绸之路经济带创新驱动发展试验区、乌昌石国家自主创新示范区科技发展计划项目(2022LQ03016)