182 | 0 | 17 |
下载次数 | 被引频次 | 阅读次数 |
为打破国产采棉机的技术瓶颈,研究采棉头柔性垂直摘锭的动力学特性,提高采棉机的采净率和稳定性,以自主研发的新型柔性垂直摘锭式采棉机作为研究背景,通过ADAMS虚拟样机技术建立其刚柔耦合的动力学模型,对采棉系统的动态特性进行了研究。结果表明:运行过程中受皮带变形影响,摘锭轴加速度曲线在0位附近正负交替剧烈,有明显的振动现象,但很快便会恢复;每0.5 s为1个运动周期,起步时摘锭受力太大容易引起轻微振动,摘锭前后周期的受力曲线波动大致相同,能够平稳运行;在摘锭刚进入内外皮带时,转动方向改变,受力也会改变并达到最大值,产生的冲击引起摘锭轴的振动,进而对整个采棉系统产生一定影响;皮带和摘锭轴的最大等效应力均在各材料的抗拉强度之内,不会发生破坏。动力学计算结果可为后续国产采棉机结构设计、改进、分析提供数据参考和指导意义。
Abstract:In order to break the technical bottleneck of domestic cotton picking machines, study the dynamic characteristics of flexible vertical picking of cotton picking heads, and improve the picking efficiency and stability of cotton picking machines, took a new type of independently developed flexible vertical picking cotton picking machine as the research background, established its rigid flexible coupling dynamic model through ADAMS virtual prototype technology, and studied the dynamic characteristics of the cotton picking system. The results showed that during operation, due to the deformation of the belt, the acceleration curve of the ingot picking axis alternated violently between positive and negative near the 0 position, with obvious vibration phenomena, but it recoverd quickly; Every 0.5 s was a motion cycle. When starting, too much force was applied to the ingot during picking, which can easily cause slight vibration. The force curve before and after picking was roughly the same, and it can run smoothly; When the picking spindle just entered the inner and outer belts, the direction of rotation changed, and the force also changed and reached the maximum value. The resulting impact causes vibration of the picking spindle shaft, which in turn had a certain impact on the entire cotton picking system; The maximum equivalent stress of the belt and ingot picking shaft was within the tensile strength of each material and will not cause damage. The dynamic calculation results can provide data reference and guidance for the structural design, improvement, and analysis of domestic cotton pickers in the future.
[1] 王全九,王康,苏李君,等.灌溉施氮和种植密度对棉花叶面积指数与产量的影响[J].农业机械学报,2021,52(12):300-312.
[2] 肖霄,孙奎,谢方平,等.水平摘锭式采棉机采摘系统研究现状与展望[J].农机化研究,2023,45(10):1-9.
[3] 国家统计局.国家统计局关于2022年棉花参量的公告[EB/OL].(2023-10-1)[2022-12-26].http://www.stats.gov.cn/sj/zxfb/202302/t20230203_1901689.html.
[4] 王旭飞.新疆棉花生产机械化技术发展研究[J].南方农机,2023,54(17):80-82.
[5] 边鑫磊,买买提明·艾尼,尼加提·玉素甫.采棉机打包式集棉箱液压系统设计与试验[J].农机化研究,2022,44(12):77-82.
[6] 毕新胜,王维新,武传宇,等.采棉机水平摘锭的工作原理及采摘力学分析[J].石河子大学学报(自然科学版),2007(6):786-789.
[7] YANG X D,SUN D,JIN L L.The automatic control system of large cotton picker[C]//Intelligent Information Technology Application Association.Advances in Control and Communication(ICEEE 2011 LNEE137).Berlin:Springer,2011:387-393.
[8] SUN W L,LI X L,FU C B.Cotton picker picks roller motion simulation and dynamics analysis[J].Applied mechanics and materials,2010,34-35:1765-1769.
[9] SUN W L,CAO Y S,SUN W.The research of virtual assembly of cotton picker roller based on virtual reality[J].Advanced materials research,2011,156-157:496-499.
[10] 努尔艾合买提·吾甫尔,买买提明·艾尼,依西甫江·赛依提,等.柔性垂直摘锭结构与动力稳定性分析[J].江苏农业科学,2019,47(16):230-234.
[11] BENNETT J M,WOODHOUSE N P,Keller T,et al.Advances in cotton harvesting technology:a review and implications for the John Deere round baler cotton picker[J].Journal of cotton science,2015,19(2):225-249.
[12] TROLDBORG M,AALDERS I,TOWERS W,et al.Application of Bayesian Belief Networks to quantify and map areas at risk to soil threats:Using soil compaction as an example[J].Soil & tillage research,2013,132(4):56-68.
[13] TULLBERG J.Tillage,traffic and sustainability:a challenge for ISTRO[J].Soil and tillage research,2010,111(1):26-32.
[14] 牛国梁,李斌,刘洋,等.我国采棉机发展历程与研究现状[J].中国农机化学报,2020,41(2):212-218.
[15] 吴传云,冯健,陈传强,等.我国棉花产业现状与机械化发展情况分析[J].中国农机化学报,2021,42(5):215-221.
[16] 石晨,雷蕾.基于ADAMS的采摘机器人动力学仿真研究[J].农机化研究,2021,43(8):31-35.
[17] 高伟周,周敬东,周天,等.基于ADAMS的植保机操纵稳定性分析与研究[J].农机化研究,2024,46(1):35-40.
[18] 刘秀梅,张宏文,王磊,等.水平摘锭式采棉机摘锭采棉的缠绕模型研究[J].农机化研究,2020,42(8):13-19.
[19] 努尔艾合买提·吾甫尔,依西甫江·赛依提,赵田,等.垂直摘锭结构参数优化设计与有限元分析[J].江苏农业科学,2020,48(1):206-213.
[20] 鲁强,高志峰,钟小兵,等.伺服平台消隙齿轮刚柔耦合动力学特性的研究与分析[J].机械设计与制造,2022(6):19-24.
[21] 周剑青,屈福政.一种机器人关节用伺服电机行星减速器的刚柔耦合动力学仿真[J].机械传动,2021,45(10):91-95.
[22] 尹刚,刘维杰,夏丰勇.基于ADAMS的抛石整平船刚柔耦合动力学建模及动态特性研究[J].船舶工程,2022,44(增刊1):275-278,323.
[23] 赵雄,曹功豪,张鹏飞,等.三自由度苹果采摘机械臂动力学分析与轻量化设计[J].农业机械学报,2023,54(7):88-98.
[24] 伦智达,方俊元,贾子文.基于ADAMS的刚柔耦合机器人动力学仿真[J].仪器仪表与分析监测,2012(2):20-22.
[25] 林红刚,袁锐波,罗威,等.一种小型码垛机械臂刚柔耦合动态特性分析[J].重庆理工大学学报(自然科学),2023,37(2):324-330.
基本信息:
DOI:10.13427/j.issn.1003-188X.2025.10.005
中图分类号:S225.911
引用信息:
[1]刘超,古丽巴哈尔·托乎提,买买提明·艾尼等.柔性垂直摘锭式采棉系统刚柔耦合动态特性分析——基于ADAMS[J].农机化研究,2025,47(10):36-42.DOI:10.13427/j.issn.1003-188X.2025.10.005.
基金信息:
国家自然科学基金地区基金项目(12162031); 西安交通大学国家重点实验室开放项目(sklms2022022)