华南农业大学工程学院;
为实现水田复杂环境的稻株精准识别,提出了一种基于改进YOLOv7模型的稻株识别方法。采用离线和在线双重数据增强,提高模型训练效果、增强泛化能力并缓解过拟合现象。YOLOv7模型中主干特征提取网络替换为GhostNet网络,增强模型自适应特征提取能力和简化模型参数计算量。YOLOv7主干特征提取网络中引入轻量级注意力机制,增强主干特征提取网络的特征提取能力。YOLOv7模型中CIoU损失函数替换为EIoU损失函数,提高模型预测框的回归效果。模型对比表明,改进YOLOv7模型的稻株识别平均精度均值为89.3%,相比YOLOv7、YOLOv5s、YOLOXs、MobilenetV3-YOLOv7模型,分别提高了4.1、7.6、6.5、0.7个百分点。田间试验表明,晴天、阴天、藻萍、杂草环境背景下平均精度均值分别为91.2%、89.1%、87.5%、88.4%。研究结果可为水田复杂环境的稻株精准识别提供切实方法。
315 | 0 | 127 |
下载次数 | 被引频次 | 阅读次数 |
[1] 陈学深,黄柱健,马旭,等.水稻机械除草避苗控制系统设计与试验[J].吉林大学学报(工学版),2021,51(1):386-396.
[2] 刁智华,王会丹,宋寅卯.基于机器视觉的农田机械导航线提取算法研究[J].农机化研究,2015,37(2):35-39.
[3] 王忠群,梁建,曹光乔,等.科学适度发展南方丘陵山地农机化[J].中国农机化,2011(2):3-8.
[4] 张漫,季宇寒,李世超,等.农业机械导航技术研究进展[J].农业机械学报,2020,51(4):1-18.
[5] 张勤,黄小刚,李彬.基于彩色模型和近邻法聚类的水田秧苗列中心线检测方法[J].农业工程学报,2012,28(17):163-171,295-296.
[6] CHOI K H,HAN S K,HAN S H,et al.Morphology-based guidance line extraction for an autonomous weeding robot in paddy fields[J].Computers and electronics in agriculture,2015,113:266-274.
[7] 蒋郁,崔宏伟,区颖刚,等.基于茎基部分区边缘拟合的稻株定位方法[J].农业机械学报,2017,48(6):23-31,49.
[8] CHEN X S,MAO Y Y,MA X,et al.A tactile method for rice plant recognition based on machine learning[J].Sensors,2020,20(18):5135.
[9] 严浦.基于BP-Adaboost和分形维数的水稻生长阶段的识别[D].武汉:华中农业大学,2022.
[10] 张新英,林婷婷,付川南.基于深度学习的植保无人机识别系统应用研究[J].农机化研究,2024,46(5):182-186.
[11] 胡仕林,陈伟,张境锋,等.基于改进YOLO v5的苹果采摘机器人目标检测方法[J].农机化研究,2024,46(6):48-55.
[12] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition,Columbus,2014:580-587.
[13] LIU F C,YANG Y,ZENG Y M,et al.Bending diagnosis of rice seedling lines and guidance line extraction of automatic weeding equipment in paddy field(Article)[J].Mechanical systems and signal processing,2020,142:106791.
[14] LIN S M,JIANG Y,CHEN X S,et al.Automatic detection of plant rows for atransplanter in paddy field using faster R-CNN[J].IEEE Access,2020,8:147231-147240.
[15] LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single shot MultiBox detector[C]//Computer Vision-ECCV 2016:14th European Conference.German:Springer,2016:21-37.
[16] REDMON J,FARHADI A.YOLO9000:Better,faster,stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition,Honolulu,2017:7263-7271.
[17] REDMON J,DIVVALA S,GIRSHICK R.et al.You only look once:Unified,real-time object detection [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:779-788.
[18] 张博,张苗辉,陈运忠.基于空间金字塔池化和深度卷积神经网络的作物害虫识别[J].农业工程学报,2019,35(19):209-215.
[19] 王小荣,许燕,周建平,等.基于改进YOLOv7的复杂环境下红花采摘识别[J].农业工程学报,2023,39(6):169-176.
[20] 宋怀波,马宝玲,尚钰莹,等.基于YOLOv7-ECA模型的苹果幼果检测[J].农业机械学报,2023,54(6):233-242.
[21] 郑果,姜玉松,沈永林.基于改进YOLOv7的水稻害虫识别方法[J].华中农业大学学报,2023,42(3):143-151.
[22] 薛珊,张亚亮,吕琼莹,等.复杂背景下的反无人机系统目标检测算法[J].吉林大学学报(工学版),2023,53(3):891-901.
[23] BILANG J M D,BALBUENA P A A L,VILLAVERDE J F.Cactaceae detection using MobileNet architecture[C]//2021 IEEE 13th International Conference on Humanoid,Nanotechnology,Information Technology,Communication and Control,Environment,and Management (HNICEM),Manila,2021.
[24] HAN K,WANG Y H,TIAN Q,et al.GhostNet:More features from cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition,Seattle,2020:1580-1589.
[25] 车翔玖,陈赫元.基于改进YOLOv4的多目标光盘检测算法[J].吉林大学学报(工学版),2022,52(11):2662-2668.
[26] 张兆国,张振东,李加念,等.采用改进YoloV4模型检测复杂环境下马铃薯[J].农业工程学报,2021,37(22):170-178.
[27] ZHOU J L,ZHANG Y Y,WANG J P.RDE-YOLOv7:An improved model based on YOLOv7 for better performance in detecting dragon fruits[J].Agronomy,2023(4),13(4):1042.
[28] 陈东培.基于图神经网络和注意力机制的会话推荐算法研究[D].广州:华南理工大学,2021.
[29] NIU Z Y,ZHONG G Q,YU H.A review on the attention mechanism of deep learning[J].Neurocomputing,2021,452:48-62.
[30] 车翔玖,于英杰,刘全乐.增强Bagging集成学习及多目标检测算法[J].吉林大学学报(工学版),2022,52(12):2916-2923.
[31] ZHENG Z H,WANG P,LIU W,et al.Distance-IoU loss:Faster and better learning for bounding box regression[J].Proceedings of the AAAI conference on artificial intelligence,2020,34(7):12993-13000.
[32] ZHANG Y F,REN W Q,ZHANG Z,et al.Focal and efficient IOU loss for accurate bounding box regression[J].Neurocomputing,2022,506:146-157.
基本信息:
DOI:10.13427/j.issn.1003-188X.2025.07.002
中图分类号:S511;TP391.41;TP18
引用信息:
[1]陈学深,梁俊,汤存耀等.基于改进YOLOv7模型的水田复杂环境稻株识别[J].农机化研究,2025,47(07):9-17.DOI:10.13427/j.issn.1003-188X.2025.07.002.
基金信息:
广东省自然基金项目(2021A1515010831); 广州市科技计划项目(202206010125); 广东省杰出青年基金项目(2019B151502056); 国家自然科学基金项目(51575195)