542 | 0 | 75 |
下载次数 | 被引频次 | 阅读次数 |
为解决苹果采摘机器人检测算法存在的网络结构复杂和参数量大的问题,提出一种基于YOLOv5的轻量化苹果检测算法。首先,将YOLOv5主干网络替换为MobileNetv3,为降低网络的计算复杂度,将深度可分离卷积引入到特征融合网络中;然后,在网络的关键位置引入注意力机制,以提高算法对苹果不同特征的提取能力;最后,使用CIoU作为改进网络的损失函数,以提升模型的检测效果。试验结果表明:改进模型的检测精度为91.5%,相较于SSD、Faster R-CNN,检测精度分别提高了2.35%、3.07%,相比于YOLOv5s检测精度提高了8.20%,且模型大小约为YOLOv5s的1/3。
Abstract:A lightweight apple detection algorithm based on YOLOv5 was proposed to solve the problems of complex network structure and large parameter quantity in the detection algorithm of apple picking robots. Firstly, the YOLOv5 backbone network was replaced with MobileNetv3. To reduce the computational complexity of the network, deep separable convolution was introduced into the feature fusion network.Then, attention mechanisms were introduced at key locations in the network to improve the algorithm′s ability to extract different features of apples. Finally, CIoU was used as the Loss function of the improved network to improve the detection effect of the model. The test results showed that the detection accuracy of the improved model was 91.5%, which was 2.35% and 3.07% higher than SSD and Faster R-CNN, respectively.Compared to YOLOv5s, the detection accuracy had been improved by 8.20%, and the model size was about one-third of YOLOv5s.
[1] 耿磊,黄亚龙,郭永敏.基于融合注意力机制的苹果品种分类方法[J].农业机械学报,2022,53(6):304-310,369.
[2] 刘晓洋,赵德安,贾伟宽,等.基于超像素特征的苹果采摘机器人果实分割方法[J].农业机械学报,2019,50(11):15-23.
[3] 刘小刚,范诚,李加念,等.基于卷积神经网络的草莓识别方法[J].农业机械学报,2020,51(2):237-244.
[4] 彭红星,李荆,徐慧明,等.基于多重特征增强与特征融合SSD的荔枝检测[J].农业工程学报,2022,38(4):169-177.
[5] 肖德琴,蔡家豪,林思聪,等.基于IFSSD卷积神经网络的柚子采摘目标检测模型[J].农业机械学报,2020,51(5):28-35,97.
[6] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:Towards real-time object detection with region proposal networks[J].IEEE transactions on pattern analysis and machine intelligence,2017,39(6):1137-1149.
[7] DAI J,LI Y,HE K,et al.R FCN:object detection via region-based fully convolutional networks[C]// Advances in Neural Information Processing Systems,2016:379-387.
[8] GAO F F,FU L S,ZHANG X,et al.Multi-class fruit-on-plant detection for apple in SNAP system using Faster R-CNN[J].Computers and electronics in agriculture,2020,176:105634.
[9] 王丹丹,何东健.基于R-FCN深度卷积神经网络的机器人疏果前苹果目标的识别[J].农业工程学报,2019,35(3):156-163.
[10] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition,Las Vegas,2016:779-788.
[11] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//European Conference on Computer Vision,Amsterdam,2016:21-37.
[12] 彭红星,黄博,邵园园,等.自然环境下多类水果采摘目标识别的通用改进SSD模型[J].农业工程学报,2018,34(16):155-162.
[13] TIAN Yunong,YANG Guodong,WANG Zhe,et al.Apple detection during different growth stages in orchards using the improved YOLO-V3 model[J].Computers and electronics in agriculture,2019,157:417-426.
[14] 周桂红,马帅,梁芳芳.基于改进YOLOv4模型的全景图像苹果识别[J].农业工程学报,2022,38(21):159-168.
[15] 赵辉,乔艳军,王红君,等.基于改进YOLOv3的果园复杂环境下苹果果实识别[J].农业工程学报,2021,37(16):127-135.
[16] HOWARD A,SANDLER M,CHEN B,et al.Searching for MobileNetV3[C]//2019 IEEE/CVF International Conference on Computer Vision,Seoul,2019:1314-1324.
[17] 王卓,王健,王枭雄,等.基于改进YOLOv4的自然环境苹果轻量级检测方法[J].农业机械学报,2022,53(8):294-302.
基本信息:
DOI:10.13427/j.issn.1003-188X.2025.07.009
中图分类号:S225;TP391.41;TP242
引用信息:
[1]王红君,刘紫宾,赵辉等.基于改进YOLOv5的苹果轻量化检测算法[J].农机化研究,2025,47(07):65-71.DOI:10.13427/j.issn.1003-188X.2025.07.009.
基金信息:
天津市科技支撑计划项目(19YFZCSN00360,18YFZCNC01120)